

Managing Effects of Climate Change At NASA's Wallops Flight Facility

Carolyn Turner

NASA Goddard Space Flight Center Wallops Flight Facility

Associate Chief - Code 250 Medical and Environmental Management Division

2010 INTERNATIONAL WORKSHOP ON ENVIRONMENT AND ENERGY

"Global Collaboration in Sustainable Environmental and Alternative Energy Strategies"

San Diego, California | November 2 - 4, 2010

Wallops Island, Virginia - East Coast, USA

Wallops Island History

Established by National Advisory
Committee on Aeronautics in 1945 as test
site for aerodynamic research

- Over 16,000 launches conducted from Wallops Island during 65 year history
- Wallops mission has evolved to include:
 - Flight program management
 - Technology development
 - Scientific research
 - Orbital Launches

Wallops 6000 Acre Facility

Wallops Mission and Activities

Mission

Wallops Facility will be a national resource for enabling lowcost aerospace-based science and technology

Technical Activities

- Research Carriers
 - Sounding Rockets
 - Balloons
 - Aircraft & UAVs
 - Small Orbital Carriers

Wallops Island

Wallops Island

Wallops Island

- Engineering Development & Technology Validation
 - Supporting Goddard Spacecraft Instruments and Subsystems
- Earth Science Research
- Mission Operations
 - Launch Range
 - Research Airport
 - Orbital Tracking

Wallops Island

U.S. Navy at Wallops

- Surface Combat Systems
 Center
 - Aegis Combat Training Center
 - Cruiser & destroyer simulators
 - Crew training
 - System development test bed
 - Ship Self-Defense Facility
 - DDG(1000) Engineering Facility
- Naval Air Warfare Center (Patuxent River)
 - Target launch operations
 - Aircraft development testing

Mid-Atlantic Regional Spaceport (MARS)

COTS and CRS Missions

Taurus II Rocket launches

- NASA's Commercial Orbital Transportation Services (COTS)
- NASA's Commercial Resupply Services (CRS)
- \$40M state and federal investment

Why is WFF a National Asset?

Wallops Island – NASA's only owned Launch Range

- Other launch facilities are owned and operated by DOD and are subject to their scheduling and mission priorities
- NASA is a Civilian Agency with scientific mission
- GSFC, WFF's lead Center, is the world leader in climate change research
- WFF's Mission is low-cost, rapid access to space

Wallops Island – National Defense

- Large Navy contingent is critical to the nation's defense and homeland security
- DoD mission partners include Missile Defense Agency, Air Force Research Laboratory, National Reconnaissance Office, and Defense Advanced Research Projects Agency

navysite.de

WFF as an Economic Engine

Benefits

- In 2008, WFF (NASA, Tenants, & Contractors) employed 1,485 people
- NASA activities generated \$250 Million in local revenue:
 - -\$133 Million from Wallops Research Park
 - -\$90 Million from Sounding Rocket launches
 - -\$6-24 Million from ELV (orbital class) launches
 - -\$1 Million from UAS

\$1.2 Billion in Total Assets

Current Value of Wallops Island Assets

NASA: \$170 Million

Navy: \$70 Million

Plus \$800 Million outfitting

MARS: \$5 Million

Total: \$1.1 Billion

Supporting: \$46.5 Million in NASA and \$50 Million in Navy Programs
Annually

New Launch Range
Infrastructure Investment

Virginia: \$26 Million

Federal: \$14 Million

Private Sector: \$15 Million

Total: \$55 Million for \$1.9Billion Program (Taurus II CRS)

The Challenge

- NASA established presence in the 1940s
- 150 years of "chronic erosion"
- Atlantic Ocean encroaching toward launch pads and infrastructure

• Southern part of Wallops Island retreated approx. 450 M (1350 feet) between 1857 and 1994

Erosion

History of Mitigation Efforts

1940's	Timber bulkhead	
1950's	8 wood groins and bulkheads, concrete aprons, and rock rubble mounds	
1960's	Groins and seawall extended north	10
1970's	47 wood groins and seawall modifications (e.g., extended, augmented, and repaired several times)	
1980's	Experimental designs (e.g., beach prism/beam sand retention units) and seawall modifications	NACA LMAL
1990's	Rock seawall and "failed groins" of the 70's removed	44585
2000's	Seawall modifications and geotextile tubes	

NASA

1959 – South End

NASA L-62-2793

1988 - Experimental "Beach Berms"

Mid 1990's to Present - Seawall

What's at Risk?

\$1.2 Billion in State and Federal Assets

MARS Pad 0-B

 Located directly adjacent to the Atlantic Ocean

Seawall

 Never intended to be the primary wearing surface between the Atlantic Ocean and the Launch Range

Mitigation - Today and into the Future

Shoreline Restoration and Infrastructure Protection Program

- NASA retained U.S. Army Corps of Engineers (USACE) for design and construction
- 50 year planning horizon
- Goal: reduce damage to Federal and State Infrastructure
- National Environmental Policy Act (NEPA)
 - Programmatic Environmental Impact Statement (EIS)
 - Bureau of Ocean Energy Management, Regulation, and Enforcement and USACE as Cooperating Agencies
 - Final PEIS under Public Review

Physical Processes

Beach Erosion

- Chronic
- Day in and day out
- Long term retreat
- Continuous wearing
- Permanent loss of beach
- Allows increased storm damage
- Further undermining of seawall

Storm Damage

- Acute
- Short term
- Big changes
- Elevated water levels
- Large waves
- Flooding
- Infrastructure destruction

THESE PROCESSES ARE ACCLERATED BY SEA LEVEL RISE AND INTENSIFIED STORM AND WAVE EVENTS ATTRIBUTED TO CLIMATE CHANGE.

SRIPP – The Details

Initial Work

- Rehabilitate existing seawall as needed (Current)
- Build seawall extension (400 meters [~1350 ft]) (March 2011 –Nov 2011)
- 2,450,000 m³ (3,200,000 yds³) sand over 6.8 kilometers (4.25 miles) provides 30 meters (100 feet) of dry beach in front of seawall (Jan 2012 Jan 2013)

SRIPP – The Details

- Beach Fill Renourishment every 5-7 years over 50 Years
 - $616,000 \text{ m}^3 (800,000 \text{ yds}^3) \text{ sand}$
- Long Term Monitoring, Analysis, and Mitigation
- Over \$40M+ Project

Historical Storm Analysis

- 149 Year Storm Dataset
 - Hurricanes 41 between1854 and 2003
 - Nor'easters 39
 between 1954 and 2003
- Basis for Design Development
- 2006 Hurricanes "Ernesto" and "Florence" created a loss of asphalt along existing UAV Runway

Before 2009 Nor'easter Damage - South End

After 2009 Nor'easter Damage – South End

Calculation of Sea-Level Rise

Total eustatic sea level rise – 0.17 ± 0.05 m /100 yr.

The future rate of eustatic sea level rise is projected to significantly exceed the historical rate.

WFF local sea level rise – $0.34 \text{ m} \pm 0.05 \text{ m}/100 \text{ yr.}$

Small changes in sea level can be expected to have dramatic effects on shoreline.

NOAA Tide Stations used to obtain total SLR rate at Wallops Island, VA.

Projected Wallops Island, VA SLR

Projected Wallops Island, VA SLR, as based upon NRC (1987) curves.

Beach Re-nourishment

Projected beach fill profile per 5-year re-nourishment cycle.

- Minimum beach fill required to protect WFF assets
- Re-nourishment profile assuming a static sea level 806,00 yds³ (616,000 m³)
- Additional amount of material to compensate for sea level rise 112,000 yds³ (86,000 m³) or 14%

Based on monitoring data, the volume of material placed at each re-nourishment cycle can be adjusted to match the amount of sea level rise.

SRIPP

Questions?

Thank you for your interest!

